2021-08-25T16:38:05+08:002019-12-03|
Contact Information
Research Team
Name Position Office Phone Email
Hoi Kuan KONGUM Macao Post-doctoral FellowE12-2045+853 8822 2761karenkong@um.edu.mo
Le TANGPost-doctoral FellowE12-2043+853 8822 2761letang@um.edu.mo
Yongshan ZHANGPost-doctoral Fellowyongshanzhang@um.edu.mo
Chang LUPhD Student
Nian ZhangPhD Student
Xianyuan WeiPhD Student
Si Hoi KOUPhD students
Ning LIUPhD Student
Shuxin GUOPhD Student
Di ZHANGPhD Student
Liangliang GAOPhD StudentE12-2043+853 8822 2761
Education
PhD Department of Biological Sciences, National University of Singapore (2007)
MSc Institute of Genetics and Cytology, Northeast Normal University, Changchun, China (2002)
BSc School of Life Science, Northeast Normal University, Changchun, China (1999)
Positions
2021.8-present Associate Professor, Faculty of Health Sciences, University of Macau
2015-2021.8 Assistant Professor, Faculty of Health Sciences, University of Macau
2013.4-2014.12 Senior Scientist /Team Leader, Vela Diagnostics, Singapore
2012.1-2013.3 Scientist, Vela Diagnostics, Singapore
2009.9-2011.12 Research Fellow, Novartis Institute for Tropical Diseases, Singapore
2008.3-2009.8 Research Fellow, Dept. of Microbiology and Molecular Genetics, Harvard Medical School, USA, Advisor: Dr. John Mekalanos
Research Interests
The treatment failure on bacterial infection diseases has become a global crisis again only less than 100 years after the first antibiotic was introduced for clinical use. It was estimated that ten million people across the world will be killed by antimicrobial resistant infections by 2050. Our lab is interested to understand how bacterial pathogens infect hosts as well as how antibiotics kill them, aiming to find solutions for global crisis of the antibiotic resistance.

 

  • Mechanism of bacterial death
    The crisis of antibiotics resistance calls for urgent actions to develop new antibiotics. One efficient way to achieve this goal is to understand how the current antibiotics act on bacteria and how bacteria respond to antibiotic killing as well as how bacteria develop antibiotic resistance. Such effort could lead to the identification of novel candidates as a target for new chemical identities with novel mode of action. With Acinetobacter baumannii and Escherichia coli as the model microorganisms, we employ a diverse toolkit, including genetics, biochemical, chemical genetic and metabolomic profiling, for key factors leading to bacterial tolerance to antibiotic killing. Our goal is to identify new targets for the development of more effective chemotherapies.
  • Bacterial pathogenesis
    We attempt to understand the molecular mechanism that bacterial pathogens use to attack and exploit hosts. Currently we mainly focus on type VI secretion system (T6SS), a complex molecular nanomachine for translocation of effector proteins to eukaryotic cells or prokaryotic competitors. With Vibrio parahaemolyticus as a model, we are dedicating to the role of T6SSs during bacterial survival and infection as well as the underlying mechanism of action of the effectors.
  • Development of new antibacterials
    We look for new antibacterial reagent for resistant bacterial pathogens and are interested in multi-discipline collaborations.
Representative Publications
  1. Xie R, Shao N and Zheng*. Integrated Co-functional Network Analysis on the Resistance and Virulence Features in Acinetobacter baumannii. Front Microbiol. 11, 598380. (2020).
  2. Guo S., Q. Huang, Y. Chen, J. Wei,J. Zheng, L. Wang, Y. Wang and Wang. Synthesis and Bioactivity of Guanidinium-Functionalized Pillar[5]arene as a Biofilm Disruptor. Angew Chem Int Ed Engl. (2020).
  3. Jiang, M., Yang, L. F., Zheng, J., Chen, Z. G. & Peng, B. Maltose promotes crucian carp survival against Aeromonas sobrial infection at high temperature. Virulence 11, 877-888. (2020).
  4. Zou, J., S. Kou, R. Xie, M.S. VanNieuwenhze, J. Qu, B. Peng & J. Zheng*. Non-walled spherical Acinetobacter baumannii is an important type of persisters upon β-lactam antibiotics treatment. Emerging Microbes & Infections. 9(1):1149-1159. (2020)
  5. Jiang M, Yang L, Chen ZG, Lai SS, Zheng J, Peng B. Exogenous maltose enhances Zebrafish immunity to levofloxacin-resistant Vibrio alginolyticus. Microb Biotechnol. 13(4):1213-1227. (2020)
  6. Zhang W, Xie R, Zhang XD, Lee LTO, Zhang H, Yang M, Peng B, Zheng J.* Organism dual RNA-seq reveals the importance of BarA/UvrY in Vibrio parahaemolyticus FASEB J. 34(6):7561-7577. (2020)
  7. Zheng J.* SARS-CoV-2: an Emerging Coronavirus that Causes a Global Threat. Int J Biol Sci. 16:1678-1685.(2020)
  8. Jiang, M., Chen, Z.G., Zheng, J. & B. Peng. Metabolites-Enabled Survival of Crucian Carps Infected by Edwardsiella tardain High Water Temperature. Front Immunol. 10:1991 (2019).
  9. Ji, X., J. Zou, H. Peng, A.S. Stolle, R. Xie, H. Zhang, B. Peng, J.J. Mekalanos* & J. Zheng*. Alarmone Ap4A is elevated by aminoglycoside antibiotics and enhances their bactericidal activity. Proc Natl Acad Sci U S A. 116(19):9578-9585 (2019).
  10. Zhang, J.Y., F. Faucher, W. Zhang, S. Wang, M. Wells, K. Poole, J. Zheng & Z. Jia. Structure-guided disruption of the pseudopilus tip complex inhibits the Type II secretion in Pseudomonas aeruginosa. PLoS Pathogens 14:e1007343 (2018).
  11. Zou, J., W. Zhang, H. Zhang, X. D. Zhang, B. Peng, & J. Zheng*. Studies on Aminoglycoside Susceptibility Identify a Novel Function of KsgA to Secure Protein Translational Fidelity during Antibiotic Stress. Antimicrob. Agents. Ch. 62(10). pii: e00853-18 (2018).
  12. Ye, J. Z., X. M. Lin, Z. X. Cheng, Y. B. Su, W. X. Li, F. M. Ali, J. Zheng, & B.  Peng. Identification and efficacy of glycine, serine and threonine metabolism in potentiating kanamycin-mediated killing of Edwardsiella piscicida. J. Proteomics 183: 34-44 (2018)
  13. Wang, S., Z. Li, Y.  Liu, G. Feng, J. Zheng*, Z. Yuan*, & X. Zhang*. Activatable Photoacoustic and Fluorescent Probe of Nitric Oxide for Cellular and in Vivo Imaging. Sensor & Actuator B. 267: 403-411(2018).
  14. Gao, D. X. Ji, J. Wang, Y. Wang, D. Li, Y. Liu, K. Chang, J. Qu, Zheng*, & Z. Yuan*. Engineering Protein-Based Nanoplatform as Antibacterial Agents for Light Activated Dual-Modal Photothermal and Photodynamic Therapy of Infection in Both the NIR I and II Windows. J. Mater. Chem. B. 6: 732-739 (2018).
  15. Kuok, K.I., P.C. Ng, X. Ji, C. Wang, W.W. Yew, D.P.C. Chan, Zheng, S.M. Lee & Wang R. Supramolecular strategy for reducing the cardiotoxicity of bedaquiline without compromising its antimycobacterial efficacy. Food. Chem. Toxicol. 119:425-429.(2018)
  16. Xie, R., X. D. Zhang, Q. Zhao, B. Peng., J. Zheng*. Analysis of Global Prevalence of Antibiotic Resistance in Acinetobacter baumannii Infections Disclosed a Faster Increase in OECD Countries. Emerg. Microbes. Infect. 7:31(2018).
  17. Ye, J., Y.B. Su, X. Lin, S.S. Lai, W. Li, F. Ali, J. Zheng & B. Peng. Alanine enhances aminoglycosides-induced ROS production by proteomic analysis. Front. Microbiol. 9:29 (2018).
  18. S. #, N. Jiang#, W. Zhao, Y. F. Ding, Y. Zheng, L. H. Wang, J. Zheng* & R Wang *. An eco-friendly in situ activatable antibiotic via cucurbit[8]uril-mediated supramolecular crosslinking of branched polyethylenimine. Chem Commun (Camb). 53: 5870-5873 (2017)
  19. Moradigaravand, D.#, L. Grandjean#, E. Martinez#, H. Li #, J. Zheng#, J. Corone, D. Moore, M. E. Török, E, V. Sintchenko, H. Huang, B. Javid, J. Parkhill, J.S. Peacock & C. U. Köser. DfrA-thyA double deletion in para-aminosalicylic acid resistant Mycobacterium tuberculosis Beijing strains. Antimicrob. Agents. Ch. 60: 3864-3867 (2016).
  20. Zheng, J.*, E. J. Rubin, P. Bifani, V. Mathys, V. Lim, M. Au, J. Jang, J. Nam, Dick, T., K. J. R. Walker, K. Pethe & L. R. Camacho*.  Para-aminosalicylic acid (PAS) is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis. J. Biol. Chem. 288: 23447-23456 (2013).
    *Article recommended by Faculty of 1000
  21. Mak, P. A., P.S. Rao, M.P. Tan, X. Lin, J. Chyba, J. Tay, B. H. Tan, P. Bifani, S. H. Ng, V. Lim, B. H. Lee, J. Cherian, J. Duraiswamy, J. Ma, D. Beer, P. Thayalan, K. Kuhe, A.  Chatterjee, F. Supek, H. Wang, R. Glynne, J. Zheng, B. Boshoff, C. Barry 3rd, T. Dick, K. Pethe & L.  Camacho. A high throughput screen to identify inhibitors of ATP homeostasis in non-replicating Mycobacterium tuberculosis. ACS Chem Biol. 7: 1190–1197 (2012).
  22. Zheng, J., B. Ho & J. J. Mekalanos. Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI secretion system in Vibrio cholera. PLoS One 6: e23876 (2011).
  23. Schmitt, E. K., M. Riwanto, V. Sambandamurthy, S. Roggo, C. Miault, C. Zwingelstein, P. Krastel, C. Noble, D. Beer, S. P. Rao, M. Au, P. Niyonmattanakit, V. Lim, J. Zheng, D. Jeffery, K. Pethe, &. L. Camacho. The natural product cyclomarin kills Mycobacterium tuberculosis by targeting the ClpC1 subunit of the caseinolytic protease. Angew. Chem. Int. Edi. 50: 5889-5891 (2011).
  24. Zheng, J., O. S. Shin, D. E. Cameron & J. J. Mekalanos. Quorum sensing and a global regulator TsrA control expression of Type VI secretion and virulence in Vibrio cholerae. P. Natl. Acad. Sci. USA 107: 21128-21133 (2010).
    *Article recommended by Faculty of 1000
  25. Xie, H, H.B. Yu, J. Zheng, J. P. Nie, L. J. Foster, Y.K. Mok, B. B. Finlay & K. Y. Leung. EseG, an Effector of the Type III Secretion System of Edwardsiella tarda, Triggers Microtubule Destabilization. Infect. Immun. 78: 5011-5021(2010).
  26. Jobichen C., C. Chakraborty, M. Li, J. Zheng, L. Joseph, Y. K. Mok. K.Y., Leung & J. Sivaraman. Structural basis for the secretion of EvpC: a key type VI secretion system protein from Edwardsiella tarda. PLoS One 5: e12910 (2010).
  27. Zheng, J. & K.Y. Leung. Dissection of a type VI secretion system (T6SS) in Edwardsiella tarda. Mol. Microbiol.66: 1192-1206 (2007).
  28. Zheng, J.,  N. Li, Y. P. Tan, J. Sivaraman, Y. K. Mok, Z. L. Mo & K. Y. Leung. (2007) EscC is a chaperone for the Edwardsiella tarda Type III secretion system putative translocon components EseB and EseD. Microbiology-UK 153: 1953-1962.
  29. Zheng, J., S. L. Tung & K. Y. Leung. Regulation of a type III and a putative secretion system (EVP) of Edwardsiella tarda by EsrC is under the control of a two-component system EsrA-EsrB. Infect. Immun. 73: 4127-4137 (2005).
  30. Tan, Y. P., J. Zheng, S. L. Tung, I. Rosenshine & K. Y. Leung. Role of the type III secretion system in Edwardsiella tarda virulence. Microbiology-UK 151: 2301-2313 (2005).
Awards
The best paper published by Journal of Biological Chemistry in the field of Microbiology in 2013
Grants
  1. PI, MOP 150,000. Start-up Research Grant (SRG2015-00006-FHS). 2015 to 2017
  2. PI, MOP 2,293,000. The Science and Technology Development Fund of Macau SAR (FDCT 066/2015/A2). 2016 to 2019
  3. PI, MOP 1,188,000. Multi-Year Research Grant (MYRG2016-00199-FHS). 2016 to 2019
  4. PI, MOP 1,490,000. Multi-Year Research Grant (MYRG2016-00073-FHS). 2016 to 2019
  5. PI, MOP 2,083,600. The Science and Technology Development Fund of Macau SAR (FDCT 0058/2018/A2). 2018 to 2021
  6. PI, MOP 2,216,000. The Science and Technology Development Fund of Macau SAR (FDCT0113/2019/A2). 2019 to 2021.
  7. PI, MOP450,000. University of Macau Multi-Year Research Grant (MYRG2019-00050-FHS). 2020 to 2021.
  8. Co-PI, MOP2,700,000, Macau Giant Panda Fund. 2019 to 2022
Team members:
Dr. Jun Zheng, Principle InvestigatorXia Ji, PhD candidate
Jin Zou, PhD candidate
Zhi Li, PhD candidate
Ruiqiang Xie, PhD candidate
Wenwen Zhang, PhD candidate
Jincan Luo, PhD candidate
Chang Lu, Graduate student

 

Former lab-members
Haibo Peng, Research Assistant
Xiuying Zhang, Research Assistant
Kosuke Obayashi, exchange student from Tokyo University of Science
Rixin Wang, Summer program student

Highly motivated researchers are always welcome to join our team. Please directly contact the PI.