Contact Information
Address (Office) E12-3024 Tzu-ming LIU
(Lab) N22-2027
Phone (Office) 8822 4693
(Lab) 8822 4217
Fax 8822 2314
Email tmliu@umac.mo
Education
Ph.D. Graduate Institute of Photonics & Optoelectronics, National Taiwan University (2004)
B.S. Department of Electrical Engineering, National Taiwan University (1999)
Positions
2016/08-present Associate Professor, Faculty of Health Sciences, University of Macau
2013/08-2016/07 Associate Professor, Inst. of Biomedical Engineering, National Taiwan University
2012/02-2012/12 Visiting Scientist, Wellman Center for Photomedicine, Massachusetts General Hospital, USA
2009/08-2013/07 Assistant Professor, Inst. of Biomedical Engineering, National Taiwan University
2005/01-2009/07 Postdoctoral Researcher, Grad. Inst. of Photonics & Optoelectronics, National Taiwan University
Research Interests

We are biomedical optics lab using lasers for the observation of cells in vivo, the sensing of metabolic molecules, the diagnosis of diseases, and the development of medical devices. For the observation, we integrated home-build femtosecond lasers, scanning electronics, and microscopes into an in vivo microscopy system. On this platform, we studied embryonic development, tumor microenvironment, pharmacokinetics of nanomedicines, and in vivo cytometry of leukocytes. For the tracking of cells or drug delivery, we developed multiphoton contrast agents with nanomaterials like Si quantum dots, gold nanorod-in-shell, insulin-gold nanodot, iron oxide, and iron-platinum alloy. Exploiting the laser excited autofluorescence of metabolic molecules, we are developing spectroscopic methods for disease diagnosis. Through the discovery of characteristic optical properties in biomedical context, we aim to develop medical devices to solve the unmet clinical needs.

Representative Publications
  • Y. Li and T.-M. Liu*, “Discovering Macrophage Functions Using In Vivo Optical Imaging Techniques,” Frontiers in Immunology 9, 502 (2018).
  • T.-M. Liu*, J. Conde*, T. Lipiński, A. Bednarkiewicz, C.-C. Huang*, “Smart NIR linear and nonlinear optical nanomaterials for cancer theranostics: Prospects in photomedicine,” Progress in Materials Science 88, 89-135 (2017).
  • J.-Y. Huang, L.-Z. Guo, J.-Z. Wang, T.-C. Li, H.-J. Lee, P.-K. Chiu, L.-H. Peng, and T.-M. Liu*, “Fiber-based 1150-nm femtosecond laser source for the minimally invasive harmonic generation microscopy,” Journal of Biomedical Optics 22, 036008 (2017).
  • C.-H. Wu, T.-D. Wang*, C.-H. Hsieh, S.-H. Huang, J.-W. Lin, S.-C. Hsu, H.-T. Wu, Y.-M. Wu*, and T.-M. Liu* “Imaging Cytometry of Human Leukocytes with Third Harmonic Generation Microscopy,” Scientific Reports 6, 37210 (2016).
  • T.-M. Liu*, J. Conde*, T. Lipiński, A. Bednarkiewicz, C.-C. Huang*, “Revisiting the classification of NIR absorbing/emitting Nanomaterials for in vivo bio-applications,” NPG Asia Materials 8, e295 (2016).
  • S.-W. Chou, C.-L. Liu, T.-M. Liu*, Y.-F. Shen, L.-C. Kuo, C.-H. Wu, T.-Y. Hsieh, P.-C. Wu, M.-R. Tsai, C.-C. Yang, K.-Y. Chang, M.-H. Lu, P.-C. Li, S.-P. Cheng, Y.-H. Wang, C.-W. Lu, Y.-A. Chen, C.-C. Huang, C.-R. Chris Wang, J.-K. Hsiao,* M.-L. Li*, and P.-T. Chou*, “Infrared-active quadruple contrast FePt nanoparticles for multiple scale molecular imaging,” Biomaterials 85, 54-64 (2016).
  • C.-C. Huang* and T.-M. Liu, “Controlled Au-polymer nanostructures for multiphoton imaging, prodrug delivery, and chemo-photothermal therapy platforms,” ACS Applied Materials & Interfaces 7, 25259-25269 (2015).
  • Y.-F. Shen, M.-R. Tsai, S.-C. Chen, Y.-S. Leung, C.-T. Hsieh, Y.-S. Chen, F.-L. Huang, R. P. Obena, M. M. L. Zulueta, H.-Y. Huang, W.-J. Lee, K.-C. Tang, C.-T. Kung, M.-H. Chen, D.-B. Shieh, Y.-J. Chen, T.-M. Liu*, P.-T. Chou*, and C.-K. Sun*, “Imaging Endogenous Bilirubins with Two-Photon Fluorescence of Bilirubin Dimers,” Analytical Chemistry 87, 7575-7582 (2015).
  • P.-C. Wu, T.-Y. Hsieh, Z.-U. Tsai, and T.-M. Liu*, “In vivo Quantification of the Structural Changes of Collagens in a Melanoma Microenvironment with Second and Third Harmonic Generation Microscopy,” Scientific Reports 5, 8879 (2015).
  • C.-L. Liu, T.-M. Liu*, T.-Y. Hsieh, H.-W. Liu, Y.-S. Chen, C.-K. Tsai, H.-C. Chen, J.-W. Lin, R.-B. Hsu, T.-D. Wang, C.-C. Chen, C.-K. Sun, and P.-T. Chou*, “In vivo Metabolic Imaging of Insulin with Multiphoton Fluorescence of Human Insulin-Au Nanodots,” Small 9, 2103-2110 (2013).
  • M.-Y. Liao, C.-H. Wu, P.-S. Lai, J. Yu, H.-P. Lin, T.-M. Liu*, and C.-C. Huang,* “Surface State Mediated NIR Two-Photon Fluorescence of Iron Oxides for Nonlinear Optical Microscopy,” Advanced Functional Materials 23, 2044-2051 (2013).
  • C.-K. Tsai, T.-D. Wang*, J.-W. Lin, R.-B. Hsu, L.-Z. Guo, S.-T. Chen, and T.-M. Liu*, “Virtual Optical Biopsy of Human Adipocytes with third harmonic generation microscopy,” Biomedical Optics Express 4, 178-186 (2013).
  • C.-K. Chen and T.-M. Liu*, “Imaging morphodynamics of human blood cells in vivo with video-rate third harmonic generation microscopy,” Biomedical Optics Express 3, 2860-2865 (2012).
  • C.-K. Tsai, Y.-S. Chen, P.-C. Wu, T.-Y. Hsieh, H.-W. Liu, C.-Y. Yeh, W.-L. Lin, J.-S. Chia, and T.-M. Liu*, “Imaging granularity of leukocytes with third harmonic generation microscopy,” Biomedical Optics Express 3, 2234-2243 (2012).
  • K. Wang#, T.-M. Liu#, J. Wu, N. G. Horton, C. P. Lin*, and C. Xu*, “Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy,” Biomedical Optics Express 3, 1972-1977 (2012). Co-first author
  • S.-H. Chia, T.-M. Liu*, A. A. Ivanov, A. B. Fedotov, A. M. Zheltikov, M.-R. Tsai, M.-C. Chan, C.-H. Yu, and C.-K. Sun*, “A sub-100fs self-starting Cr:forsterite laser generating 1.4W output power,” Optics Express 18, 24085- 24091 (2010).
  • C.-Y. Lin, T.-M. Liu, C.-Y. Chen, Y.-L. Huang, W.-K. Huang, C.-K. Sun, F.-H. Chang*, and W.-L. Lin*, “Quantitative and qualitative investigation into the impact of focused ultrasound with microbubbles on the triggered release of nanoparticles from vasculature in mouse tumors,” Journal of Controlled Release 146, 291-298 (2010).
  • K.-W. Hu, T.-M. Liu, K.-Y. Chung, K.-S. Huang, C.-T. Hsieh, C.-K. Sun, and C.-S. Yeh*, “Efficient near-IR hyperthermia and intense nonlinear optical imaging contrast on the gold nanorod-in-shell nanostructures,” Journal of the American Chemical Society 131, 14186-14187 (2009).
  • T.-M. Liu, H.-P. Chen, L.-T. Wang, J.-R. Wang, T.-N. Luo, Y.-J. Chen, S.-I. Liu, and C.-K. Sun*, “Microwave resonant absorption of viruses through dipolar coupling with confined acoustic vibrations,” Applied Physics Letters 94, 043902 (2009).
  • T.-M. Liu, M.-C. Chan, I.-H. Chen, S.-H. Chia, and C.-K. Sun*, “Miniaturized multiphoton microscope with a 24Hz frame-rate,” Optics Express 16, 10501-10506 (2008).
  • T.-M. Liu, J.-Y. Lu, H.-P. Chen, C.-C. Kuo, M.-J. Yang, C.-W. Lai, P.-T. Chou, M.-H. Chang, H.-L. Liu, Y.-T. Li, C.-L. Pan, S.-H. Lin, C.-H. Kuan, and C.-K. Sun*, “Resonance-enhanced dipolar interaction between terahertz photons and confined acoustic phonons in nanocrystals,” Applied Physics Letters 92, 093122 (2008).
  • T.-M. Liu, M.-J. Yang, C.-W. Lai, P.-T. Chou, M.-H. Chang, H.-L. Liu, and C.-K. Sun*, “Piezoelectricity-induced terahertz photon absorption by confined acoustic phonons in wurtzite CdSe nanocrystals,” Physical Review B. 77, 085428 (2008).
  • S.-P. Tai, Y. Wu, D.-B. Shieh, L.-J. Chen, K.-J. Lin, C.-H. Yu, S.-W. Chu, C.-H. Chang, X.-Y. Shi, Y.-C. Wen, K.-H. Lin, T.-M. Liu, and C.-K. Sun*, “Molecular imaging of cancer cells using plamon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Advanced Materials 19. 4520-4523 (2007).
  • T.-M. Liu, S.-P. Tai, C.-H. Yu, Y.-C. Wen, S.-W. Chu, L.-J. Chen, M. R. Prasad, K.-J. Lin, and C.-K. Sun*, “Measuring plasmon-resonance enhanced third-harmonicχ(3) of Ag nanoparticles,” Applied Physics Letters 89, 043122 (2006).
  • S.-W. Chu, I-H. Chen, T.-M. Liu, P.-C. Chen, C.-K. Sun*, and B.-L. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” Optics Letters 26, 1909-1911 (2001).

Book Chapter

Y. Li, C.-W. Lee, Y.-C. Wang, C.-C. Huang, T.-M. Liu, “Single and Multiphoton Responsive Nanomaterials for the Investigation of Cancer Microenvironment,” Ch3 in Handbook of Nanomaterials for Cancer Theranostics, 1st Ed., Elsevier 2018.

Full List of Journal Papers
Research Grants
Title Role Project Period Funding Agent
Investigating the dynamics of melanoma angiogenesis with multiphoton in vivo microscopy
FDCT/018/2017/A1
PI 08/15/2017-

08/14/2020

 Macao Science and Technology Development Fund (FDCT)
Metabolic imaging of macrophages in a bleeding micro-environment

FDCT/122/2016/A3

PI 03/27/2017-

03/26/2020

Macao Science and Technology Development Fund (FDCT)
Biotechnology and Medical Device Translation and Training Program -ANCHOR UNIVERSITY (NTU)

104-2321-B-002 -075

Co-PI 08/01/2015-

07/31/2016

Ministry of Science and Technology
Investigating the Combination of Focused Ultrasound and NanopDNA(IP-10) for Cancer Tumor Ultrasono-Immunotherapy

104-2221-E-002 -089 -MY3

Co-PI 08/01/2015-

07/31/2016

Ministry of Science and Technology
Development of micro-optics integrated microfluidic system for high-speed singe cell image and analysis

NSC 104-2221-E-002 -111

Co-PI 08/01/2015-

07/31/2016

Ministry of Science and Technology
The opportunity, challenges and strategies for the development of mobile and personalized healthcare service in Taiwan (1/3)

NSC 104-2627-M-002 -018

Co-PI 08/01/2015-

07/31/2016

Ministry of Science and Technology
Laser scanned microscopy system PI 03/31/2015-

07/31/2016

Revlis Biotech Company
2015 Education Program for Biomedical Innovation and Commercialization PI 01/01/2015-

12/31/2015

Ministry of Education
Using in vivo nonlinear optical microscopy and animal model to study the dynamic change of cancer stem cells during vemurafenib treatment of melanoma

UN104-046

PI 01/01/2015-

12/31/2015

National Taiwan University Hospital
Studying dynamic mechanisms of tumor angiogenesis with in vivo nonlinear optical microscopy

NHRI-EX104-10427EI

PI 01/01/2015-

07/31/2016

National Health Research Institutes
2014 Education Program for Biomedical Innovation and Commercialization PI 01/01/2014-

12/31/2014

Ministry of Education
Indocyanine Green Fluorescence Densitometry for the Assessment of Human Hepatic Function in vivo

UN103-017

PI 01/01/2014-

12/31/2014

National Taiwan University Hospital
In vivo Complete Blood Count (CBC) with Nonlinear Optical Microscopy

102-2221-E-002-195-MY3

PI 08/01/2013-

07/31/2016

Ministry of Science and Technology
Data Acquisition System for Laser Scanned Microscopy PI 08/01/2013-

07/31/2015

Wisdom Consulting
Prediction System of Schizophrenia with Cloud Computation

UN102-062

PI 01/01/2013-

12/31/2013

National Taiwan University Hospital
Exploring the molecular mechanisms underlying the intriguing “proatherogenic” and “dysmetabolic” properties of epicardial adipose tissue: applying the novel harmonics-based in vivo optical virtual biopsy system and the fluorescence insulin-Au nanodots

NSC 101-2314-B-002-192-MY2

Co-PI 08/01/2012-

07/31/2014

Ministry of Science and Technology
In vivo Blood Cell Cytometry and Plasma Molecule Quantification with Nonlinear Optical Microscopy

101R7843

PI 08/01/2012-

07/31/2015

Ministry of Education
In vivo cell tracking with harmonic generation microscopy

NSC 101-2918-I-002-022

PI 02/01/2012-

12/31/2012

Ministry of Science and Technology
Studies on Mitochondrial Dynamics in a Mouse Model for Neurodegenerative Disease

NSC 100-2320-B-002-093

Co-PI 08/01/2011-

07/31/2012

Ministry of Science and Technology
Nano-acoustics and nano-ultrasonics

NSC 99-2120-M-002 -013

NSC 100-2120-M-002 -009

NSC 101-2120-M-002-005

Co-PI 08/01/2010-

07/31/2013

Ministry of Science and Technology
Studying pharmacokinetics of nanomedicines by the gold nanorod-in-shell nanoparticles with harmonic generation microscopy

99R70411

PI 08/01/2010-

07/31/2011

Ministry of Education
Microscopic pharmacokinetics of nanomedicines revealed by in vivo nonlinear optical microscopy

NSC 99-2628-E-002-009

NSC 100-2628-E-002-006

NSC 101-2628-E-002-004

PI 08/01/2010-

07/31/2013

Ministry of Science and Technology
Optical indices for the screening of hepatocellular carcinoma (HCC) with nonlinear optical microscopy and two-photon fluorescence lifetime imaging microscopy (FLIM)

98R0334

Co-PI 08/01/2009-

07/31/2010

Ministry of Education
Probing the metabolic status of cells based on the fluorescence lifetime and intensity of endogenous porphyrins

NSC 98-2112-M-002-022

PI 11/01/2009-

07/31/2010

Ministry of Science and Technology
Patents

C.-K. Sun, T.-M. Liu, Y.-C. Huang, and G.-W. Chern, “Method and System for Measuring an Ultrashort Optical Pulse,” USA patent US6,734,976 B2, May 11, 2004.

Awards
  1. Potential Startup Awards (Ministry of Science & Technology, Taiwan)
    2015
  2. Outstanding Startup Awards (Ministry of Science & Technology, Taiwan) 2014
  3. Excellent Young Faculty Grant (Ministry of Science & Technology, Taiwan) 2013
Professional Activities
Society memberships
Member, American Chemical Society (ACS) 2010-
Member, International Society for Optics and  Photonics (SPIE) 2005-
Senior Member, Optical Society of America (OSA) 2002-
Member, Institute of Electrical and Electronic Engineers (IEEE) 2001-
Teaching experience

Corner stone courses

  • Optical microscopy
  • Laser principles and engineering
  • Fundamentals of optics

Capstone courses

  • Clinical observation & finding unmet needs
  • Medical innovation with electronics
  • Biomedical innovation & commercialization (Incubate 1 startups and train 48 innovation teams)
  • Quality system of medical devices
Administrative leadership & committee service
Co-coach, Medical Device Innovation in NTU SPARK 2014-present
Deputy Director, Creativity and Entrepreneurship Program 2014-present
Member , Campus Planning Committee 2013-2014
Section Chief, International Collaboration, Molecular Imaging Center 2011-present
Director, Student Activity Division, Office of Student Affairs 2009-2011